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The lattice energies of ionic crystals were calculated from a computer summation of the Coulombic 
interaction energies. The present technique was first applied to simple crystal symmetries, including 
rock salts, fluorites, and silicates, to establish the reliability of the method. Calculated values for these 
systems were found to be within 3 to 8% of the accepted values. The lattice energies of several of the 
light rare-earth (La through Eu) pyrosilicates, RE&O,, were calculated by the same procedure. The 
enthalpies of formation for these crystals were then estimated from the calculated lattice energies by 
applying the Born-Haber cycle. Both the low temperature tetragonal and the high temperature 
orthorhombic forms of the pyrosilicates were calculated. o 1990 Academic press, IX. 

I. Introduction The Born-Haber cycle is frequently used 
to calculate either enthalpy of formation or 

In a previous study, it was shown that the lattice energy when the other is known (3). 
addition of light rare-earth oxides to alu- In this well-known technique, elemental 
mino-silcate refractory compositions im- species are taken from their standard states 
proves their resistance to molten aluminum at a given temperature, evaporated to mon- 
alloy attack (1). A microstructural study of atomic gases, ionized, reacted, and con- 
this refractory system indicated that beta densed to the crystalline state. Enthalpy of 
rate-earth pyrosilicates (/3-RE&07) were formation is equal to the algebraic sum of 
the primary rare-earth compounds formed all the energies associated with the steps in 
during firing of these compositions (2). this process. The Born-Haber cycle for a 
There were no experimental thermody- simple diatomic metal oxide is shown in 
namic data available for these silicates in Fig. 1. Unfortunately, neither the lattice en- 
the literature. In the present study the en- ergy nor the enthalpy are known for the 
thalpies of formation are calculated to as- rare-earth silicates. In order to calculate the 
sess whether the chemical stability of the enthalpies of formation of these silicates, 
pyrosilicate was responsible for the im- the lattice energies must first be calculated 
proved resistance of the rare-earth doped from the known crystal structures. 
alumino-silicate refractories to aluminum Between 1918 and 1924, Madelung, Ha- 
alloy attack. ber, Born and Lande developed the quanti- 
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FIG. 1. The Born-Haber cycle for a simple diatomic 
metal oxide. Hf = enthalpy of formation, UL = lattice 
energy, IM = ionization potential of the metal, E. = 
electron affinity of oxygen, SM = sublimation energy 
of the metal, D o2 = dissociation energy of oxygen. 

tative theory of ionic crystals which is still 
used today. Born and Lande in particular 
were responsible for the formulas which al- 
low the calculation of lattice energy and en- 
thalpy of an ionic crystal from the interac- 
tion of individual ion pairs (4). Since that 
time several researchers, such as Born and 
Mayer (5), Kapustinskii (6), and Kapu- 
stinskii and Yatsimirskii (7), have modified 
the form of the lattice energy equation and 
the inherent assumptions. Ewald (8) devel- 
oped a more rapidly converging method of 
calculating the electrostatic potential in a 
crystal structure composed of point 
charges. 

II. Approach 

In this work, a simple summation, similar 
to that of the Madelung constant calcula- 
tion, was used. The three-dimensional co- 
ordinates of the special positions of ions in 
complex crystals and their space group 
symmetries were taken from literature. Us- 
ing symmetry operations on the special ion 
positions, the coordinates of all of the ions 
in the unit cell were generated. Larger 
multicell crystals were then constructed by 
stacking cells along the crystallographic 

axes. The Coulombic attractions and repul- 
sions of every ion were summed with re- 
spect to all the other ions in the crystal. 
From this sum and other constant terms, 
the lattice energy was then calculated using 

where 

U = lattice energy (finite crystal) 
Zi = valence of ion i 
Zj = valence of ion j 
R, = distance between ions i and j 
Eo = permittivity of free space 
n = Born exponent 
e = charge on an electron 
N = Avagadro’s number. 

Here, the Born repulsion term is taken 
outside of the summation similar to the 
Madelung expression. 

III. Procedure 

The lattice energies of simple rock salt 
and fluorite structure crystals were calcu- 
lated in order to establish the reliability of 
the method and to determine the level of 
errors. For all of the crystal systems a com- 
puter program was used to calculate the 
summation in Eq. (1). Once the lattice ener- 
gies of simple ionic structures were con- 
firmed, less ionic and more structurally 
complex crystals were calculated before 
proceeding to the unknown rare-earth sili- 
cates. The lattice energies of P-quartz and 
cr-NazSizOS were included because of their 
similarities to the rare-earth silicate sys- 
tems. The lattice constants, special ion po- 
sitions, and the space groups of the crystal 
systems were obtained from literature as 
shown in Table I. 

From the special ion positions and the 
space group data, the locations of atoms in 
the cells of crystals were generated using 
equivalent position symmetry operations 
from the Znternationaf Tables (14). 
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TABLE I 

CRYSTAL STRUCTURES AND LATTICE PARAMETERS 

Lattice parameters 

Crystal Symmetry a0 bo cc Reference 

NaCl Rock salt 5.64056 Wyckoff (9) 
CaF, Fluorite Fm3m 5.46295 Wyckoff (9) 
SiO, P-Quartz 5.01 5.47 Wyckoff (9) 

Hex. P622 
wNa2Si205 Pbnc, 6.409 15.422 4.896 Pant and Cruickshank (10) 

orthorhombic 

a-La,S&O, P41, 
wPr2Si207 tetragonal 
a-Nd2SizO? 
cy-SmzSizO-i 

/3-La&O, mm, 
P-Ce,SizO, orthorhombic 
/3-NdzSi10, 
p-Sm&O, 
P-Eu&O, 

Low RE pyrosilicates 
6.7945 24.871 
6.7651 24.608 
6.7405 24.524 
6.6933 24.384 

High RE pyrosilicates 
5.410 13.17 8.76 
5.400 13.05 8.73 
5.394 12.95 8.72 
5.384 12.85 8.69 
5.374 12.82 8.65 

Dago et a1.O (II) 
Felsche and Hirsigerh (22) 

Smolin and Shepelev (13) 

a Dago et al. provide special positions of ions. 
b Felsche and Hirsiger give lattice parameters. 

Simple computer programs were written 
to carry out the calculations. One program 
constructed crystals and recorded the 
three-dimensional coordinates of the ions. 
A second program summed the Coulombic 
attractions and repulsions of a particular 
three-dimensional network of ions. 

Prior to and during cell stacking, ionic 
space coordinates were defined by the crys- 
tallographic axes of the particular struc- 
ture. Consequently, after cell stacking, 
those crystal symmetries defined by other 
than orthogonal axes were transformed to 
Cartesian coordinates by the computer pro- 
gram. For example, p-quartz is defined by 
hexagonal ion coordinates. Furthermore, 
cell stacking must be done along hexagonal 
directions in order to maintain the continu- 
ity of the structure. After stacking, how- 
ever, the Cartesian coordinates of all ions 
were generated regardless of the symmetry 
of the original crystal. 

The Coulombic interaction was calcu- 
lated for ionsj and k by first establishing the 
distance between them in Angstroms. In 
Cartesian coordinates, this distance is sim- 
ply the square root of the sum of the 
squares of the coordinate differences. The 
Coulombic contribution for each j-k pair 
was calculated according to the appropriate 
charges of the j and k ions as shown in Eq. 
(1). A running summation was made of all 
of the interactions, resulting in a total Cou- 
lombic energy for a given lattice of ions. 

Starting with single cells and progressing 
to several hundred cells, Coulomb energy 
summations were computed for crystals of 
increasing size. As shown in Fig. 2, as the 
number of formula units in a crystal in- 
creases, the lattice energy per mole asymp- 
totically approaches a lower limit. The 
value of this asymptote is the predicted 
value of the lattice energy of an infinite 
crystal. This asymptote can be unambigu- 



CALCULATION OF RARE-EARTH PYROSILICATES 133 

0 0 200 400 600 

3 ?B 
z -6.2 - 

-6.4 - 
0 - Sodium Silicate Data 

)- Fitted Curve 

a 
,178 I .‘, I 

20 160 200 240 280 
FORMULA UNITS FORMULA UNITS 

FIG. 2. Coulombic energy data and fitted curves are displayed for (A) NaCl and (B) cu-Na2Si205. 

ously evaluated by nonlinear least-squares 
fitting of these data to a generalized asymp- 
totic equation. After trying numerous more 
simple equations, the following hyperbolic 
form was chosen: 

y(x) =A +! 

+ Clog, 1 +V1 +(x+0)2 
(x + D) . (2) 

The fitted parameter A is the value of the y- 
axis asymptote and is the predicted lattice 
energy of an infinite crystal. 

IV. Results and Discussion 

lower symmetry and corresponding varia- 
tions in the stacking of cells. Cubic cells 
can be easily stacked to minimize surface 
energy for a particular crystal volume. 
Note that the number of formula units of 
the cubic data points usually corresponds 
to equiaxed crystals. The lattice constants 
of the silicate (orthorhombic) crystal are 
6.4, 15.4, and 4.9. Cell stacking causes vari- 
ations in the ratio of volume to surface. 
When this ratio is relatively low for a par- 
ticular number of formula units, the data 
point falls above the curve or further away 
from the asymptote. This problem is also 
demonstrated in the standard deviation 
data provided in Table II. 

IV.A. Coulombic Summations 
and Lattice Energies 

Coulombic summations asymptotically 
approached a negative limit as the crystal 
size increased. In Table II, the Coulombic 
summation energies and the corresponding 
crystal size in number of formula units are 
tabulated. The relationship between crystal 
size and Coulombic sum is illustrated in 
Fig. 2 for a high symmetry rock salt crystal 
and the more complex silicate (ar-Na$&Os). 
In addition to the raws data points shown, a 
nonlinear regression curve for each crystal 
is also plotted in Fig. 2. Note that the fit for 
(a-Na2SiZ05) is not quite as good as that for 

The calculated lattice energies were in 
reasonable agreement with the accepted 
values. In Table III, a comparison is given 
between the lattice energies calculated 
from this lattice summation, from known 
Madelung constants, and from the Born- 
Haber cycle. For the ionic NaCl and CaF2 
crystals, correlation is good. Several higher 
valence ionic compounds, such as Ce02 
and MgO, having fluorite or rock salt struc- 
ture were also calculated with similar 
results, as expected. 

Data for P-quartz in Table II show good 
agreement for a covalently bonded crystal. 
‘Note ,also that’ convergence occurs more 
slowly than the cubic systems described 

the cubic structure. This is the result of earlier. This was at least partially antici- 
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TABLE II 

COULOMBIC INTERACTION SUMMATION ENERGIES 

Formula 
units NaCl 

Coulombic interaction energy (kcalimole) 

CaFZ P-Quartz cr-NatSizOS a-La2Si207 ,&La&O, 

1 
2 
3 
4 -171.51 
8 

24 
32 - 191.85 
48 
72 
81 
96 

108 -197.12 
120 
128 
160 
192 
240 
256 - 199.49 
375 
500 -200.72 
648 

-3022.51 
-469.97 

-8,695.31 
-9,696.87 

-3136.22 
-576.06 

-7107.74 
-7317.23 
-7534.20 

-7623.75 

-9,160.58 
-9975.18 

-9629.98 
-10,271.15 

-9,814.75 
-10,355.87 

-3213.84 
-7695.56 

-618.21 
-10,004.61 

- 10,384.32 
-7740.50 

-3260.77 - 10,070.06 
-7756.56 

-639.82 
-3289.18 

-651.87 
-3302.78 

A” -202.16 -666.28 -3325.52 -7806.68 - 10,428.64 - 10,197.33 
Std. Dev. 0.0596 0.6971 1.1695 4.6439 2.3771 1.9699 

0 Obtained from nonlinear regression curve fitting. The value of A corresponds to the Cou- 
lomb energy at an infinite number of formula units. 

TABLE III 
LATTICE ENERGY CALCULATIONS AND COMPARISONS 

Lattice energya (kcalimole) % Errorb 

Crystal Born exp., n -II, -.!JM - UBH &2 63 

NaCl 10 181.94 185.28 188.46 1.80 3.46 
CaF2 9 592.25 628.99 629.56 5.84 5.92 
P-Quartz 9 2956.02 3236.83 3209.40 8.67 7.89 
a-Na,SilOS 9 6939.27 NA 7153.00 NA 3.00 

Q ZJ,, calculated from U, = A(1 - l/n); U,, calculated from the known Made- 
lung constant; and UBH, calculated from the Born-Haber cycle, 

b ,I?,2 = (v) x 100, E,3 = (uB;;HuL) x 100. 
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pated because of the hexagonal symmetry. 
Cell stacking along hexagonal axes pro- 
duces crystals that have lower volume to 
surface ratios than cubic crystals, hence, 
causing slower convergence. The agree- 
ment between the calculated and accepted 
lattice energy values is quite good. The 
Coulombic model is based upon an assump- 
tion that the crystal is ionic. The Coulombic 
energy is summed over a cloud of point 
charges in space. Considering the highly 
covalent nature of P-quartz, the error is 
smaller than anticipated. 

The lattice energy for cr-Na2Siz05 is 
within 3% of the value calculated by the 
Born-Haber cycle. This silicate was cho- 
sen because of its structural and composi- 
tional similarity to the desired rate-earth sil- 
icates. It is thought to be representative of 
the approximate level of error in the RE- 
silicate calculations. Note that the present 
calculated lattice energies are all less nega- 
tive than the accepted values, as shown in 
Table III. Hence, it is probable that the cal- 
culated lattice energies of the RE-silicates 
are also less negative than the actual 
values. 

IV.B. Rare-Earth Pyrosilicates 

The light rare-earths, La through Sm, 
form pyrosilicates of the chemical form 
REZSi207, having two structural poly- 
morphs (10). The low temperature tetrago- 
nal structure is formed from the high tem- 
perature orthorhombic structure only 
through careful annealing. The Coulombic 
interaction data for low (4 and high (/3) lan- 
thanum-pyrosilicate are tabulated in Table 
II. Lattice energy and enthalpy of forma- 
tion values are shown for these polymorphs 
in Table IV. Note that the a-pyrosilicate 
structure converged significantly more rap- 
idly than the /3 polymorph. The LY form was 
within 0.6% of the asymptote at 72 formula 
units, while the high temperature structure 
was approximately 3% away. The /3-struc- 
ture converged more slowly because it has 

TABLE IV 

LATTICEENERGYANDENTHALPIESOFFORMATION 
CALCULATIONSFORCRYSTALSOFLOW(LY)ANDHIGH 
(@RARE-EARTH PYROSILICATES 

Enthalpy of 
Born exp., Lattice energy,” formation,b 

Crystal n - UL (kcalimole) -Hf (kcalimole) 

a-La&O, 11 9480.58 834.90 
ct-pT~si*o, 11 9587.43 859.71 
a-NdzSizO, 11 9622.31 875.83 
wSmzSi207 11 9686.08 897.60 

/3-LazSi20, 11 9270.30 624.62 
p-Ce2Si207 11 9315.60 631.26 
P-NdZSi20, 11 9346.74 600.26 
p-Sm2Siz07 1 I 9387.99 599.51 
,&EuZSi207 11 9416.33 608.01 

(i UL = A(1 - l/n), where A is the fitted parameter, see 
Table II. 

b Calculated from the lattice energies using the Born-Haber 
cycle. 

a more open structure and consequently 
more surface area per unit charge. The 
transformation from the (Y- to p-structure 
results in an 8% decrease in density. 

No low temperature form of cerium is 
tabulated. Though the structure should the- 
oretically exist, previous researchers were 
not successful in creating a-cerium pyrosili- 
cate (12). 

Within each structure the lattice energies 
become more negative as the atomic num- 
ber of the rare-earth element increases, as 
shown in Fig. 3. The opposite trend would 
be anticipated from the electronegativity 
differences or the degree of ionicity of these 
silicates. However, this increase in lattice 
energy results from the well-known lan- 
thanide contraction. In the low temperature 
pyrosilcates this increase in lattice energies 
is more pronounced than that in the high 
temperature structure. Lanthanide contrac- 
tion in the low temperature form causes a 
greater change in the lattice energy because 
ions are closer together, analogous to solid 
spheres that are nearly touching. In the 
more open high temperature form, this con- 
traction has less effect on the lattice en- 
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ergy. In addition, the opposing influence of 
relative ionicity may become significant in 
the higher temperature structure. The lat- 
tice energy difference between La to Sm is 
roughly 205 kcal/mole for the (low) tetrago- 
nal structure relative to 117 kcal/mole in 
the p-structure. 

The enthalpies of formation also increase 
fairly uniformly in the low temperature 
structure, as shown in Fig. 4. However, the 
trend for the p-pyrosilicate enthalpies is 
more complex. Because of the relatively 
low ionization potentials of La and Ce, the 
enthalpies of formation of &La and p-Ce 
pyrosilicate are more negative than those of 
Nd, Sm, and Eu. Excluding the lattice ener- 
gies and ionization potentials, the other val- 
ues in the Born-Haber cycles of these com- 
pounds are very similar. 

The polymorphic transformation temper- 
ature has been reported as roughly 1600 K. 
The transformational enthalpies (differ- 
ences between CY and /3 enthalpies of forma- 
tion) are approximately 200 kcal/mole. 
Since the free energies of formation for (Y 
and B are equal at the transformation tem- 
perature, the implied entropy of transfor- 
mation is approximately 125 Cal/mole. This 
entropy estimation appears reasonable. Be- 

La Ce Pr Nd Pm Sm ELI 

ATOMIC NUMBER 

FIG. 3. Lattice energies from curve fitted data are 
shown for the light rare-earth (Y- and P-pyrosilicates as 
a function of the atomic number (or-REzSizO, = low 
temperature form, /3-RE&O, = high temperature 
form). 

La Ce Pr Nd Pm Sm Eu 

4 
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FIG. 4. The light rare-earth pyrosilicate enthalpies of 
formation calculated using the Born-Haber cycle are 
shown as a function of the atomic number (a-RE2Si207 
= low temperature form, P-REzSi207 = high tempera- 
ture form). 

cause of the possible multiplying effects of 
upstream errors, this entropy calculation 
was only of academic interest and should 
be regarded appropriately. 

V. Conclusions 

The simple summation of Coulomb en- 
ergy predicted several simple crystal sys- 
tems within 3 to 8% of the known lattice 
energies. The difference in the case of CX- 
Na2Si205 was only 3%. The light rare-earth 
a-pyrosilcate enthalpies of formation were 
calculated and ranged between -835 and 
-900 kcal/mole. Those of the high temper- 
ature polymorphs varied between -600 and 
-625 kcal/mole. It is anticipated that the 
actual values should be approximately 3% 
more negative. 
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